Terahertz conductivity in semiconductor nanostructures: fundamental aspects of charge transport and confinement


Understanding of the photoconductivity mechanisms in semiconductors on the nanoscopic level is a crucial prerequisite for the conception of novel optoelectronic and photovoltaic applications. Terahertz conductivity spectra provide information on the charge transport phenomena, which occur typically at this length scale, without the need of electrical contacts to be attached. In this project we will develop a concerted experimental and theoretical approach for microscopic description and proper understanding of ultrafast photoconductivity in nanoscale semiconductor systems. In optical pump – terahertz probe experiments we will emphasize an ultra-broadband spectroscopic aspect. In theory we will focus on the quantum description of the mechanisms of charge carrier localization in semiconductor nanostructures and on phenomena connected with the onset of the nonlinear transport regime including an appropriate effective medium theory description of the morphology of samples.